射电望远镜

射电望远镜
射电望远镜是观测和研究来自天体的射电波的基本设备,它包括:收集射电波的定向天线,放大射电信号的高灵敏度接收机,信息记录,处理和显示系统等等。射电望远镜的基本原理和光学反射望远镜相信,投射来的电磁波被一精确镜面反射后,同相到达公共焦点。用旋转抛物面作镜面易于实现同相聚集。因此,射电望远镜的天线大多是抛物面。
射电观测是在很宽的频率范围内进行,检测和信息处理的射电技术又较光学波希灵活多样,所以,射电望远镜种类更多,分类方法多种多样。例如按接收天线的形状可分为抛物面、抛物柱面、球面、抛物面截带、喇、螺旋、行波、天线等射电望远镜;按方向束形状可分为铅笔束、扇束、多束等射电望远镜;按观测目的可分为测绘、定位、定标、偏振、频谱、日象等射电望远镜;按工作类型又可分为全功率、扫频、快速成像等类型的射电望远镜。
空间望远镜
在地球大气外进行天文观测的大望远镜。由于避开了大气的影响和不会因重力而产生畸变,因而可以大大提高观测能力及分辨本领,甚至还可使一些光学望远镜兼作近红外 、近紫外观测。但在制造上也有许多新的严格要求,如对镜面加工精度要在0.01微米之内,各部件和机械结构要能承受发射时的振动、超重,但本身又要求尽量轻巧,以降低发射成本。第一架空间望远镜又称哈勃望远镜。
双子望远镜
双子望远镜是以美国为主的一项国际设备(其中,美国占50%,英国占25%,q占15%,智利占5%,阿根廷占2.5%,巴西占2.5%),由美国大学天文联盟(AURA)负责实施。它由两个8米望远镜组成,一个放在北半球,一个放在南半球,以进行全天系统观测。其主镜采用主动光学控制,副镜作倾斜镜快速改正,还将通过自适应光学系统使红外区接近衍射极限。
太阳望远镜

双子望远镜
日冕是太阳周围一圈薄薄的、暗弱的外层大气,它的结构复杂,只有在日全食发生的短暂时间内,才能欣赏到,因为 天空的光总是从四面八方散射或漫射到望远镜内。
1930年第一架由法国天文学家李奥研制的日冕仪诞生了,这种仪器能够有效地遮掉太阳,散射光极小,因此可以在太阳光普照的任何日子里,成功地拍摄日冕照片。从此以后,世界观测日冕逐渐兴起。
日冕仪只是太阳望远镜的一种,20世纪以来,由于实际观测的需要,出现了各种太阳望远镜,如色球望远镜、太阳塔、组合太阳望远镜和真空太阳望远镜等。
红外望远镜
红外望远镜(infrared telescope)接收天体的红外辐射的望远镜。外形结构与光学镜大同小异,有的可兼作红外观测和光学观测。但作红外观测时其终端设备与光学观测截然不同,需采用调制技术来抑制背景干扰,并要用干涉法来提高其分辨本领。红外观测成像也与光学图像大相径庭。由于地球大气对红外线仅有7个狭窄的“窗口”,所以红外望远镜常置于高山区域。世界上较好的地面红外望远镜大多集中安装在美国夏威夷的莫纳克亚,是世界红外天文的研究中心。1991年建成的凯克望远镜是最大的红外望远镜,它的口径为10米,可兼作光学、红外两用。此外还可把红外望远镜装于高空气球上,气球上的红外望远镜的最大口径为1米,但效果却可与地面一些口径更大的红外望远镜相当。
数码望远镜

红外望远镜
数码望远镜被主流科技媒体评为“百项科技创新”之一,由于结构简单,成像清晰,能够用较小的机身长度实现超长焦的效果,在加上先进的数码功能,可以实现较为清晰拍照录像功能,在大大拓宽了望远镜的应用领域,可以广泛的应用在侦查、观鸟、电力、野生动物保护等等。
数码望远镜还具备拍照、录像、图像传输等功能,传统望远镜长时间的观察,可导致眼睛不适,但是数码望远镜的使用者可以很方便地通过LCD液晶显示屏观看放大,如果觉得显示屏较小不能满足要求,可以直接通过tv接口连接到电视或者是mp4上,甚至可以直接通过usb连接线连到电脑上,实现在线录制或者图像传输,当然视频的流畅程度和颜色远不及自然颜色,即使如此,数码望远镜做为一种高端的望远镜,同样提供舒适的直接观测功能!
数码望远镜具备的拍照功能,可以保存人生历程中经历的众多难忘瞬间,在美国,此款产品广受体育运动教练员、球探、猎鸟人、野生动物观察员、狩猎爱好者以及任何一个摄影、摄像爱好者的青睐。这一领域的佼佼者,当属德国蔡司最新研制的photoscope85摄影望远镜,目前国内很多公安、军警、野生动物保护已经利用数码望远镜的优势,应用到工作中了,尤其是公安部门,他们可以轻松的远程拍照取证。